Turfgrass Water Use Efficiency ประสิทธิภาพในการใช้น้ำสำหรับหญ้า

Dr. Phillip Ford Melbourne Polytechnic

Several different factors affect the efficient use of water on turf. This paper picks out three of the main factors for discussion. While seemingly unrelated, the combined effect of better efficiency in each of these three factors is greater than the sum of the parts.

ประจัยต่างๆมีผลต่อประสิทธิภาพการใช้น้ำของหญ้า เอกสารนี้ ได้หยิบยกปัจจัย 3 อย่างมาอธิบาย ดู

เหมือนว่าไม่เกี่ยวข้องกัน การนำมาใช้แนวร่วมกันจะทำให้เกิดประสิทธิภาพมากกว่าการรวมกันของการทำ

แต่ละอย่าง

1. C₃ vs C₄ photosynthesis

1.พืช C_3 และ C_4 มีความต่างกันในการสังเคราะห์แสง

Cool season grasses (bentgrass, ryegrass, fescue and bluegrass) form a three-carbon intermediate in the first step of photosynthesis. Warm season grasses (bermudagrass, kikuyu, zoysia and paspalum) initially form a four-carbon intermediate, which demonstrates that their physiology is fundamentally different. Due to possible confusion with the cool season/warm season terminology, it's probably better to use the terms C_3 and C_4 for the two groups. หญ้าเมืองหนาว มีการรวมกันของคาร์บอนใดออกไซค์ 3 อะตอมในช่วงแรกของขบวนการสังเคราะห์แสง หญ้าเมืองร้อน เริ่มต้นจะประกอบด้วยการ์บอนจำนวน 4 อะตอม แสดงว่าขบวนการทางสรีรวิทยาเบื้องต้นมีความแตกต่างกัน อาจจะเกิด ความสับสนในคำศัพท์ของพืชเมืองร้อนและเมืองหนาว บางที่การใช้คำว่า C_3 และ C_4 จะดีกว่าโดยแบ่งเป็น 2 กลุ่ม

 C_3 grasses have a daily evapotranspiration (ET) rate around 25% higher than C_4 grasses. In hot, dry conditions, C_3 species need to keep their stomata open to enable reasonably efficient photosynthesis, and to provide cooling and reduce Heat Stress. C_4 species have an add-on pathway to normal photosynthesis that operates efficiently with reduced stomatal opening, so their daily ET rate is lower, as shown in the table below:

พืช C_3 จะมีการระเหยน้ำและคายน้ำประมาณ มากกว่าพืช C_4 ในสภาพที่ร้อน แห้งแล้งพืช C_3 ต้องการรักษาให้ปากใบเปิด ตลอดเวลา เพื่อที่จะทำให้การสังเคราะห์แสงมีประสิทธิภาพ และเป็นการรักษาความเย็นเพื่อลดความเครียสจากอุณหภูมิสูง พืช C_4 มีขบวนการเพิ่มความสามารถทำให้สามารถสังเคราะห์แสงตามปกติได้ ซึ่งมีผลต่อการเปิดของปากใบดังนั้นจึงมีการ คายน้ำและระเหยน้ำด่ำ ซึ่งได้แสดงในตารางด้านล่าง

Table 1: Mean crop coefficient of various C_3 and C_4 turfgrasses in a Melbourne summer (Ford, 2006) ตารางที่ 1 ตารางค่าสัมประสิทธิ์เปรียบเทียบการคายน้ำของหญ้า C_3 และ C_4 ที่เมลเบิร์นในช่วงฤดูร้อน

Turfgrass species	Mean crop coefficient
Creeping Bent	0.90
Tall Fescue	0.89
Perennial Ryegrass	0.88
Kentucky Bluegrass	0.91
Creeping Red Fescue	0.89
Seashore Paspalum	0.75
Stenotaphrum secundatum	0.71
Kikuyu	0.70
Hybrid Bermudagrass	0.70
Zoysia japonica	0.72

However, this doesn't adequately explain the real difference in drought resistance between the two groups. In Melbourne, for example, a Turf Manager must budget around 8 Megalitres per hectare per summer to sustain a C_3 surface, while the budget for a C_4 surface is in the range 0-4 Ml/ha per summer, depending on the colour and activity required. In southern Australia, C_4 grasses will survive without any summer irrigation. This is due to a combination of factors:

อย่างไรก็ตาม ไม่ได้อธิบายอย่างเหมาะสมถึงความแตกต่างอย่างแท้จริงในเรื่องการทนต่อความแห้งแล้งระหว่างพืช 2 กลุ่มนี้ ในเมลเบิร์น มีตัวอย่างเช่น เจ้าหน้าที่สนามมีงบประมาณการใช้น้ำประมาณ 8,000 คิวบิกเมตรต่อ 6.25 ไร่ ในช่วงฤคูร้อน เพื่อที่จะรักษาคุณภาพของหญ้า C_3 แต่งบการใช้น้ำของสนามที่ใช้หญ้า C_4 มีอยู่ 0-4,000 ลิตรต่อ 6.25 ไร่ ขึ้นกับสีของหญ้า และกิจกรรมที่มี ทางใต้ของประทศออสเตรเลีย หญ้า C_4 สามารถจะอยู่รอดได้โดยที่ไม่ต้องให้น้ำในช่วงฤคูร้อน เกิดจาก ปัจจัยประกอบดังนี้

- a) C₄ grasses have a 25% lower ET rate than C₃ grasses, as shown in the table above.
- a) หญ้า C_4 มีอัตราการคายน้ำและระเหยน้ำ ต่ำกว่าหญ้า C_3 ถึง 25 % ซึ่งได้แสดงในตารางข้างต้น
- b) C_4 grass roots improve over summer, whereas C_3 grass roots decline and become dysfunctional as summer goes on.
- b) หญ้า C_4 มีระบบรากที่ดีขึ้นในช่วงฤดูร้อน แต่หญ้า C_3 ระบบรากจะหดสั้นลงและไม่สามารถทำงานได้อย่างปกติในช่วง ฤดูร้อน
- c) Summer moisture stress in C₃ grasses leads to Heat Stress, as evaporative cooling declines and foliage temperatures exceed 36°C or so. This leads to inefficiency in photosynthesis, plus a number of summer pest and disease problems, and possibly to High Temperature Kill at temperatures over 42°C. By comparison, C₄ grasses tolerate foliage temperatures of 60°C, and high temperatures 'should not be a concern with warm season grasses' (Fry & Huang, 2004).

- c) ความชื้นของอากาศในฤดูร้อนที่เกิดกับหญ้า C_3 จะนำพาให้เกิด ความเครียดจากความร้อน การคายน้ำเพื่อรักษาความเย็น ลดลงและใบมีอุณหภูมิมากกว่า36 องศาหรือมากกว่า ทำให้เกิดการสังเคราะห์แสงอย่างไม่มีประสิทธิภาพ ประกอบกับศัตรู หญ้าและโรคที่มีมากในช่วงฤดูร้อนและเป็นไปได้ว่าอุณหภูมิที่สูงกว่า 42 ทำให้หญ้าตายได้ หากเปรียบเทียบหญ้า C_4 ใบ สามารถทนต่ออุณหภูมิได้ถึง 60 องศาดังนั้นอุณหภูมิที่สูงนั้นไม่มีผลกระทบต่อหญ้าเมืองร้อนมากนัก
- d) C_4 grasses revive rapidly from drought stress, immediately after rainfall or irrigation occurs. C_3 grasses, on the other hand, don't recover from summer drought dormancy until cooler temperatures return in the autumn.
- d) หญ้า C_4 สามารถฟื้นตัวอย่างรวดเร็วจากการขาดน้ำ หลังจากได้รับฝนหรือได้น้ำจากระบบน้ำ หญ้า C_3 จะมีความแตกต่าง อย่างมาก ไม่สามารถฟื้นตัวจากการขาดน้ำจนกระทั่งอุณหภูมิเย็นลงในช่วงฤดูใบไม้ร่วง
- e) Many C₄ grasses have rhizomes, a major factor in drought resistance, survival and recovery (Zhou, Lambrides & Fukai, 2014).
- e) หญ้า ${\bf C}_4$ จะมีลำต้นใต้ดินเป็นจำนวนมาก ทำให้ทนต่อการขาดน้ำและยังคงมีชีวิตอยู่และพร้อมฟื้นตัวอยู่เสมอ

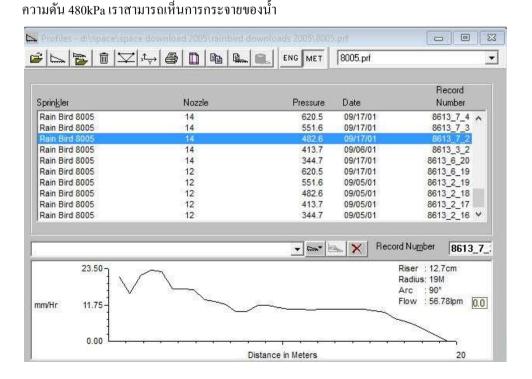
The true drought resistance of C_4 grasses can only be appreciated when they are pushed to their limit. In Melbourne, where the long running Millenium Drought had forced the issue, C_4 grasses on sportsgrounds and fairways performed extremely well for several summers without any irrigation at all. Turf Managers in that city now have the confidence to severely limit irrigation whenever they choose.

หญ้า C_4 จะสามารถทนต่อความแห้งแล้ง ได้อย่างดีมากในกรณีที่มีการให้น้ำอย่างจำกัด ในเมลเบิร์น ในปีที่มีความแห้งแล้ง อย่างมากเป็นระยะเวลายาวนาน หญ้าในสนามกีฬาและแฟร์เวย์ยังคงมีสภาพที่ดีในช่วงฤดูร้อนหลายๆปีโดยไม่ได้ให้น้ำ ทำ ให้ผู้ดูแลสนามในเมืองนี้มีความมั่นใจอย่างมากว่าหญ้านี้เป็นหญ้าที่เขาจะเลือกปลูก

2. Irrigation Uniformity

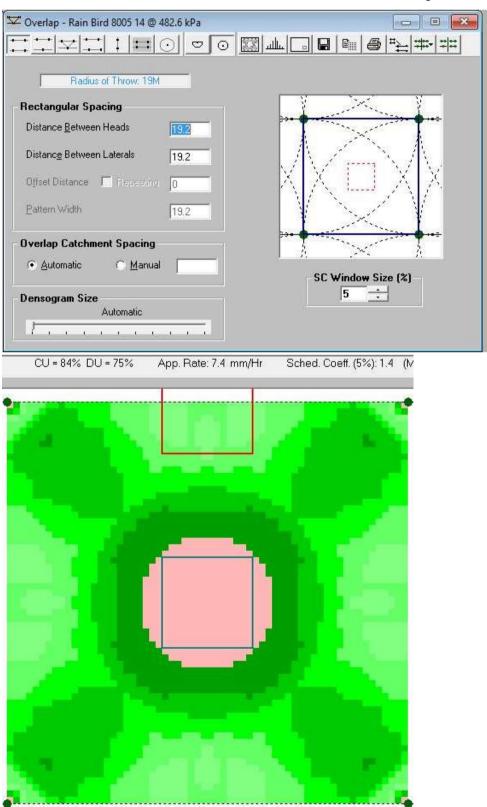
2. ความสม่ำเสมอของระบบน้ำ

An audit of ten golf course greens in Melbourne, including some high profile clubs, found an average coefficient of uniformity (CU) of only 78%. With good design and maintenance, a CU of over 90% is perfectly feasible. This author has tested several turf areas with CUs in the field over 90%, the highest being 94%. (Note: rainfall will have a CU of 100%).

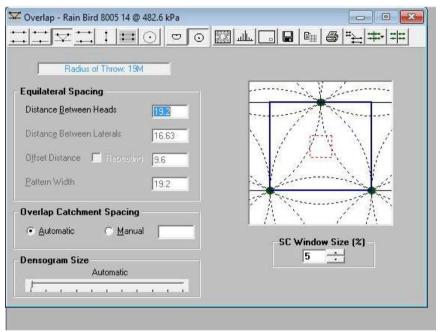

การตรวจสอบความสม่ำเสมอของระบบน้ำโดยเฉพาะกรีนจำนวน 10 สนามในเมลเบิร์น รวมถึงสนามชั้นนำ พบว่าค่าสัม ประสิทธ์ของความสม่ำเสมอของระบบน้ำมีเพียง 78 เปอร์เซ็นต์ สำหรับสนามที่ออกแบบและดูและระบบการให้น้ำอย่างดี ค่าสัมประสิทธิ์ความสม่ำเสมอในแปลงหน้างานพบว่าค่าสัมประสิทธิ์ความสม่ำเสมอมีมากกว่า 90 เปอร์เซ็นต์และค่าค่าสัมประสิทธิ์ความ สม่ำเสมอสูงสุดอยู่ที่ 94 เปอร์เซ็นต์ (ฝนตกจะมีค่าค่าสัมประสิทธิ์ความสม่ำเสมอเท่ากับ 100)

A poor CU means that some areas are receiving far too much water and other areas too little. In practice, the watering program needs to cater for the driest areas, unless a lot of hand watering is done. But poor CU doesn't just involve a waste of water and an excessive use of labour, it affects plant health. The drier areas, in particular, can suffer drought and heat stress and all the problems that follow. It might also lead to salt accumulation, if saline water is being used. For that reason a calculation of Distribution Uniformity should also be done, which gives greater emphasis to the driest areas. DU values over 85% are desirable.

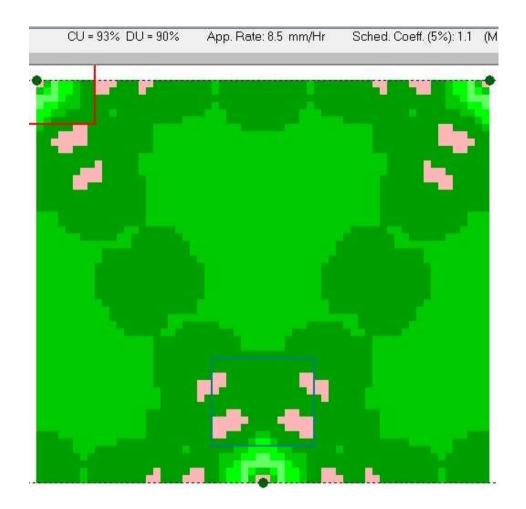
ค่าสัมประสิทธิ์ความสม่ำเสมอที่ต่ำ หมายถึงบางพื้นที่ได้รับน้ำมากเกินไปและบางพื้นที่ได้รับน้ำน้อยเกินไปอย่างแตกต่าง
กันมาก ในวิธีการปฏิบัติ โปรแกรมการให้น้ำจะ เป็นปริมาณน้ำที่เหมาะสมที่ให้กับหญ้าในพื้นที่ๆแห้ง เว้นแต่การให้น้ำด้วย
มือเป็นประจำ แต่ค่าสัมประสิทธิ์ความสม่ำเสมอ ที่ไม่ดีทำให้น้ำสูญเสียไปอย่างมากและเปลืองแรงงานและมีผลต่อสุขภาพ
หญ้า ในพื้นที่แห้งแล้ง สามารถทำให้แห้งขาดน้ำและมีความเครียดจากความร้อนเพิ่มขึ้นและปัญหาต่างๆก็จะตามมา และ
อาจจะทำให้เกิดการสะสมของเกลือหากน้ำที่ใช้มีความเค็ม ดังนั้นการคำนวณหาค่าความสม่ำเสมอของกระกระจายน้ำจะมี
ความสำคัญ โดยเฉพาะพื้นที่ๆแห้งแล้ง และค่าการกระจายตัวควรมีมากกว่า 85 เปอร์เซ็นต์


Designing an irrigation system with a high CU and DU requires careful application of the design principles, including sprinkler selection, stationing and pipe sizing, followed by competent, diligent installation and, afterwards, periodic testing and maintenance. Computer tools such as the SPACE program (Sprinkler Profile and Coverage Evaluation, from the Centre of Irrigation Technology, Fresno, http://www.fresnostate.edu/jcast/cit/software/) make it relatively simple to design systems with high uniformity. The program has empirical data on the output (precipitation rate at distance from the head) of many types of turf sprinkler head, tested at a range of pressures and flow rates. An example is shown below. If we select a Rain Bird 8005, to operate at 480kPa, we can view its precipitation profile:

การออกแบบระบบน้ำจะออกแบบจากการใช้ค่าสัมประสิทธิ์ความสม่ำเสมอและค่าความสม่ำเสมอของการกระจายน้ำ ซึ่ง ต้องการความระมัดระวัง ในการออกแบบระบบการให้น้ำ ชนิดของหัวน้ำ ขนาดท่อน้ำ สถานนีควบคุมระบบน้ำ และติดตาม ด้วย การติดดั้งการทำงานอย่างแข็งขัน การทดสอบเป็นระยะๆ และการบำรุงดูแลรักษา อุปกรณ์ที่ให้เครื่องคอมพิวเตอร์เช่น โปรแกรม SPACE program (Sprinkler Profile and Coverage Evaluation) สามารถช่วยทำให้เราให้น้ำใค้อย่างสม่ำเสมอ มากยิ่งขึ้น โปรแกรมจะทำให้เห็นปริมาณการให้น้ำอย่างชัดเจน (การกระจายตกของน้ำจากหัวน้ำ) จากหัวน้ำชนิดต่างๆ ทด ลอบระยะของแรงดับและอัตราการใหลของน้ำ ตัวอย่างดับล่างได้แสดงให้เห็น หากเราใช้หัวน้ำรนาเบิร์ด 8005 และเกิดที่


We could then set up the 8005 heads on a square design at head-to-head spacing, as below, and model the result as a Densogram (over the page):

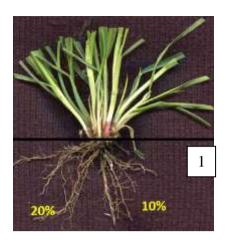
เราสามารถตั้งค่าหัว 8005 ให้น้ำแบบตารางจากหัวถึงหัว เช่นภาพด้านล่างและผล densogram ภาพถัดต่อไปอีกภาพ


The square design at head-to-head spacing has a CU of only 84% and DU of 75%. We can do much better. The Scheduling Coefficient, by the way, of 1.4, indicates that the system would need to run 40% longer compared to if the CU was 100%; so there is a wastage factor of 40%. Using a triangular design with the laterals brought in 3m, as shown below, the Densogram on the next page looks a lot better:

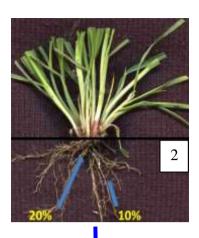
การออกแบบชนิดตาราง ระยะหัวถึงหัว มีค่า CU เพียงแค่ 84 เปอร์เซ็นต์และค่า DU อยู่ที่ 75เปอร์เซ็นต์ เราสามารถทำได้ ดีกว่านี้ จากค่าสัมประสิทธิ์การตั้งเวลาของ 1.4 บ่งบอกว่าระบบต้องทำงานมากกว่านี้ถึง 40 เปอร์เซ็นต์หากเราต้องการ CU เป็น 100 เปอร์เซ็นต์ ดังนั้นเป็นปัจจัยของการสูญเสียถึง 40 เปอร์เซ็นต์ การใช้ Densogram แบบสามเหลี่ยม ซึ่งมีด้านข้าง กว้าง 3 เมตร ดังภาพด้านล่าง ภาพ จะดดีกว่ามาก

Densogram on a triangular design at 19.2 head spacing, 16.6m lateral spacing. Note the CU, DU and SC figures now. The figures can be improved even further, and the SPACE program lets you model several configurations. Putting the irrigation heads at 15m spacing, for example, results in very high CU values, but cost would become an issue.

Densogram ที่เป็นสามเหลี่ยมออกแบบที่ระยะระหว่างหัว19.2 และระยะค้านข้าง 16.6 เมตร ค่าตัวเลข CU, DU และ ค่า SC กำหนดไว้ ได้ภาพที่เห็นสามารถปรับให้น้ำได้ใกลขึ้นและโปรแกรม ทำให้เราสามารถเห็นรูปแบบต่างๆได้มากขึ้น กรีนที่มี หัวห่างกัน 15 เมตร ตัวอย่างมีผลต่อค่า CU แต่ค่าใช้จ่ายอาจมีปัญหา


These theoretical CU and DU values are achievable in the field, and should be used routinely to guide sprinkler selection and layout. Tender documents should specify a uniformity standard required by the designer and installer (e.g. minimum CU of 90% and DU of 85%) that can be audited on completion of the project. An irrigation audit (a catch-can test) is a relatively simple process, whether for newly-completed installations or for existing systems. Uniformity values in older systems can often be improved with a few simple modifications. ทฤษฎีของค่า CU และ DU ประสบความสำเร็จหน้างานและสามารถใช้งานได้อย่างทั่วไปในการออกแบบหัวน้ำและการวาง แบบ เอกสารสำหรับผู้เข้าประมูลวางระบบควรจะต้องมีค่ามาตรฐานของความสม่ำเสมอซึ่งมาจากผู้ออกแบบและผู้ติดตั้ง (เช่นค่าขั้นต่ำ CU 90% and DU 85%)) ซึ่งสามารถตรวจสอบได้เมื่อโปรเจกนี้ทำเสร็จแล้ว การตรวจสอบระบบน้ำโดยการ ใช้กระป้องวัดปริมาณน้ำเป็นขบวนการอย่างง่าย ไม่ว่าระบบน้ำนั้นจะพึ่งติดตั้งเสร็จหรือทำเสร็จมานานแล้ว ความสม่ำเสมอ ของการกระจายน้ำในระบบที่ใช้มานานแล้วสามารถปรับปรุงโดยการดัดแปลงแบบง่ายๆ

3. Root depth and function


ระดับรากที่ถึกและการทำงาน

Root growth is constrained by soil temperature. But when conditions are right for growth, the main driver of root architecture is the chase for water. The mechanism is quite simple. The hormone auxin is largely produced in the shoots, and travels down in the phloem to activate mitosis, cell elongation and root hair development at the root tips. The role of auxin is

complex in dicot plants, and not well understood. But its role seems simpler in grasses; a likely mode of action is as shown in the following concept diagrams: การเจริญเติบโตของรากถูกจำกัดโดยอุณหภูมิดิน แต่เมื่อสภาพเหมาะสมกับการเจริญเติบโต ปัจจัยหลักที่ทำให้รากมี โครงสร้างคือความชื้นที่มี กลไกค่อนข้างไม่ซับซ้อน ฮอร์โมนออกซิน จะผลิตโดยฮอกเป็นส่วนใหญ่และดินทางด้านล่าง ผ่านท่อลำเลียงอาหารไปยังบริเวณที่มีการแบ่งเซลอย่างมาก ส่วนที่เซลยืดตัวและบริเวณที่มรการพัฒนาระบบรากฝอยที่ ปลาฮราก บทบาทของออกซินที่ซับซ้อนในพืชใบเลี้ยงเดี๋ยวยังไม่สามารถอธิบายได้มากนักแต่บทบาทสำหรับหญ้านั้นดูมา ซับซ้อน ขบวนการได้แสดงตามแผนภูมิด้านล่างนี้

- 1. Imagine a grass with roots on the left side growing into a moist zone (maybe a bit more organic or clayey) and the roots on the right side growing into a drier zone, maybe a bit sandy.
- 2. The amount of water delivered to the shoots by each side is indicated by the blue arrows.

- 3. Auxin is produced in the shoots and travels down to stimulate growth at the root tips. The amount of auxin delivered to each side (the red arrows) is proportional to the amount of water each side delivered.
- 4. Some days later, the root architecture will have responded as shown. The mechanism explains how roots chase water.

ภาพที่ 1 หญ้าที่รากทางด้านซ้ายเจริญอยู่ในพื้นที่ๆมีความชื้นสูง (ที่อินทรียวัตถุมากหรือดินเหนียว) ส่วนรากทางด้านขวามือ เจริญในส่วนที่มีความชื้นต่ำหรือเป็นทราย

ภาพที่ 2 ปริมาณน้ำที่ไปยังส่วนขอดของแต่ละด้านนั้นแสดงให้เห็นด้วยลูกศรสีฟ้า

ภาพที่ 3 ออกซินที่ผลิตได้จากส่วนขอดจะเดินทางผ่านท่ออาหารมายังส่วนปลายราก ลูกศรสีแดง ซึ่งเป็นสัดส่วนกับปริมาณน้ำที่ ได้รับแต่ละฝั่ง

ภาพที่ 4 สักพักหนึ่งโครงสร้างของรากก็จะตอบสนองอย่างที่ได้เห็น ซึ่งกลไกเหล่านี้แสดงให้เห็นถึงทำไมรากถึงไล่หาน้ำ

The implications of this mechanism are profound. Thatch has a volumetric moisture holding capacity of around 40% (Hurto, Turgeon & Spomer, 1980), which is much higher than any underlying rootzone. Once a thatch layer has formed, new roots that are initiated from the crown or nodes won't move deeper into the soil but will ramify within the thatch layer. One of the great benefits of frequent sand topdressing is that it dilutes the moisture holding capacity of the thatch, hopefully to somewhere near the moisture holding capacity of the underlying rootzone, to encourage roots to go there.

ขบวนการที่เกิดกับกล ใกเหล่านี้มีความหมายมาก ชั้น thatch มีปริมาณความชื้นที่ประมาณ 40 % ซึ่งมีมากกว่าบริเวณที่อยู่ ของระบบราก เมื่อชั้น thatch เริ่มเกิดขึ้น รากใหม่ได้เริ่มเกิดจากส่วนลำต้นใต้ดินหรือข้อและไม่เกิดลึก แต่จะแตกแขนงอยู่ ในส่วนชั้น thatch นี้ เมื่อเราทำการหว่านทรายบางๆและบ่อยๆขึ้น จะช่วยเจือจางอัตราการดูดซับของความชื้นในชั้น thatch นี้ และหวังว่าความชื้นจะลดลงใกล้กับความชื้นในชั้นรูทโซน

Another illustration of the auxin mechanism concerns moisture gradients through the profile. A USGA-type perched water table construction automatically sets up a moisture gradient, with the top 100 mm or so of rootzone having a moisture holding capacity of, say, 18%, which increases to 28-30% at the interface with the gravel. This gradient provides an incentive for roots to grow deeper, as they will be finding more water. In non-perched water table profiles, another type of moisture gradient can be generated if irrigation is held off as long as possible. Root density is usually highest near the surface, and diminishes as you go deeper into the profile. So after several days without irrigation, water uptake by the plant will have dried the upper zone of the profile, meaning there is relatively more water down deeper. The deep roots accessing this will receive more auxin, encouraging them to probe even further. But this won't be achieved if irrigation is done every day or two, there needs to be a gap of several days to establish the moisture gradient.

ภาพแสดงประกอบอันหนึ่งที่ให้เห็นกลไกของออกซินที่เกี่ยวข้องกับความชื้นที่อยู่ในชั้นของเครื่องปลูก โครงสร้างกรีนที่ เป็นไปตามสเป็กของ USGA ระดับน้ำที่เอ่อขึ้นมาอยู่ด้านล่างจะทำให้เกิดความชื้นขึ้น บริเวณส่วนที่อยู่ด้านบนคือลึกไม่เกิน 10 ซม.จากพื้นผิวลงไปจะมีความชื้นประมาณ 18 % และอาจจะเพิ่มมาได้ถึง 28-30% บริเวณใกล้กับฐานกรวด ความชื้นที่ เหมาะสมเหล่านี้ทำให้รากหญ้าสามารถเจริญได้ดีและลึกซึ่งสามารถหาน้ำได้มากขึ้น ในบางกรณีที่ไม่เกิดน้ำใต้ดินเอ่อขึ้น ความชื้นจากสิ่งอื่นสามารถเกิดได้หากระบบน้ำให้มากเพียงพอ ความหนาแน่นของรากจะมีมากบริเวณด้านบนและมีน้อยลง เมื่อลงไปลึกขึ้นในชั้นเครื่องปลุก ดังนั้นเมื่อไม่ให้น้ำหลายวัน น้ำที่พืชดูดขึ้นมาด้านผิวหน้าจะแห้งดังนั้นด้านลึกลงไปจะมี น้ำอยู่ รากที่ลึกจะได้รับออกซินมากขึ้น ทำให้รากาวได้มากขึ้น แต่สิ่งเหล่านี้จะไม่เกิดขึ้นหากระบบน้ำเปิดทุกวัน หรือทุก วันแต่ต้องมีระยะเวลาหลายวันเพื่อให้เกิดการลดลงของความชื้นในระดับบนลงล่าง

A soil moisture sensor is an invaluable tool to quickly and accurately measure volumetric soil moisture. Several types are available, although not all are accurate across all soil types. I used a Theta Probe in my research, and validated it against the oven drying method on 56 different samples, from sand through to clay. The correlation between the Theta Probe measurements and the oven-dry values was 0.93 (Ford, 2013), so I have great confidence in the Theta Probe, which is also robust and easy to use.

เครื่องวัดความชื้นเป็นอุปกรณ์อันมีคุณค่าสำหรับวัดความชื้นได้อย่างรวดเร็วและแม่นยำ มีหลายแบบให้เลือกแม้ว่าทุกแบบ จะเที่ยงตรงทุกชนิดของดิน ผมใช้ชนิดที่มีเข็มวัด 4 จุด และตรวจสอบโดยการอบดินกับตัวอย่างดิน 56 ตัวอย่าง ตั้งแต่ทราย จนกระทั่งดินเหนียว ค่าความสัมพันธ์ระหว่างเครื่องวัดที่มีเข็มวัด จุดกับค่าที่ได้จากการอบดินมีค่า 0.93 ดังนั้นผมจึงมีความ มั่นใจในเครื่องมือที่มี จุดนี้และสามารถใช้ได้อย่างง่ายและแข็งแรง

Summary สรุป

Several factors affect water use efficiency in turfgrass. This paper has touched on three important ones. While each is important on their own, the combination of using a C_4 grass with a deep root system, maintained with severely restricted watering, and irrigated with a system with over 90% uniformity, will result in very efficient water use. มีหลายปัจจัยที่มีผลต่อการใช้น้ำอย่างมีประสิทธิภาพของหญ้า เอกสารชิ้นนี้ได้อธิบายปัจจัย 3 ปัจจัย ประกอบกับการใช้ หญ้า C_4 และผลปฏิสัมพันธ์ของปัจจัยทั้ง 3 มีต่อความลึกของราก การรักษาหญ้าในสภาพที่จำกัดน้ำและการให้น้ำโดยที่ ระบบน้ำมีความสม่ำเสมอมากกว่า 90 เปอร์เซ็นต์ มีผลต่อประสิทธิภาพการใช้น้ำอย่าเต็มที่

References

Ford, P.G. (2006): ET rates, Crop Factors and canopy temperatures of common turfgrasses during soil moisture depletion in summer conditions. Masters Thesis, University of Sydney.

Ford, P.G. (2006): An investigation into the agronomic factors affecting sustainability, surface hardness and rotational traction on community-level football grounds during drought conditions. Phd thesis, Federation University, Ballarat.

Fry, J. and Huang, B. (2004): Applied Turfgrass Science and Physiology. Wiley & Sons, N.J.

Hurto, K.A., Turgeon, A.J. and Spomer, L.A. (1980): Physical characteristics of thatch as a turfgrass growing medium. Agronomy Journal, 72(1), 165-167.

Zhou, Y., Lambrides, C.J. and Fukai, S. (2014): Drought resistance and soil water extraction of a perennial C₄ grass: contributions of root and rhizome traits. Functional Plant Biology 41(5) 505-519. http://dx.doi.org/10.1071/FP13249